A Classical QSAR Study on Some Platelet Aggregation Inhibitors

Rajeshwar P. Verma*
Department of Chemistry, Pomona College, Claremont, CA 91711, USA

Abstract

Cardiovascular diseases are still the main cause of morbidity and mortality in the world. Anti-platelet drugs have found clinical application in the secondary prevention of vascular events including acute myocardial infarction, stroke and cardiovascular death. In the present review, we have developed sixteen quantitative structure-activity relationships (QSAR) for different sets of compounds that are X-phenols (I), Xcatechols (II), caffeic acid amides (III), X-alcohols (IV), 1,4-naphthoquinones (V), tetrahydronaphthalenes (VI), phenoxyacetaldehyde guanylhydrazones (VII), pyrrolobenzylisoquinolines (VIII) and phosphonic acids (IX) with respect to their anti-platelet activities. QSAR results have shown that the anti-platelet activities of these compounds are largely dependent not only on their hydrophobicity, but also on the influence of their molar refractivity.

Keywords: Platelet aggregation inhibitors, Hydrophobicity, CMR, QSAR, Adenosine diphosphate (ADP), Arachidonic acid (AA), collagen (Col), Thrombin (Thr).

INTRODUCTION

The activation and aggregation of platelets play a critical role in the pathophysiology of thrombotic diseases and would be expected to modify the natural history of cardiovascular diseases [1,2]. Cardiovascular diseases are one of the major causes of morbidity and mortality in the world. Anti-platelet drugs have found clinical application in the secondary prevention of vascular events, including acute myocardial infarction, stroke and cardiovascular death [3]. Aspirin and clopidogrel are two widely used anti-platelet drugs, which act by different mechanisms. The mechanism of action of aspirin involves irreversible inactivation of cyclooxygenase I for the lifespan of the platelet while clopidogrel is an irreversible ADP receptor antagonist. There is a recent trend towards combining these two mechanistically different anti-platelet agents in an effort to reduce coronary events [4,5]. It has been observed that the currently used anti-platelet drugs, including aspirin, clopidogrel, ticlopidine, and others, are effective against certain but not all of the many endogenous platelet activators. Because of the limited efficacy, a significant number of serious thromboembolic complications still occur, highlighting the need for a more effective drug. In the present review, quantitative structure activity relationships (QSAR) were developed for different sets of compounds that are X-phenols (I), X-catechols (II), caffeic acid amides (III), X-alcohols (IV), 1,4-naphthoquinones (V), tetrahydronaphthalenes (VI), phenoxyacetaldehyde guanylhydrazones (VII), pyrrolobenzylisoquinolines (VIII) and phosphonic acids (IX) with respect to their anti-platelet activities. QSAR results have shown that the anti-platelet activities of these compounds are largely dependent on their hydrophobicity, but the importance of their molar refractivity cannot be ignored.

[^0]
EXPERIMENTAL

All the data have been collected from the literature (see individual QSAR for respective references). C is the molar concentration of a compound and $\log 1 / C$ is the dependent variable that defines the biological parameter for QSAR equations. Physicochemical descriptors are auto-loaded, and multi-regression analyses (MRA) used to derive the QSAR executed with the C-QSAR program [6]. The parameters used in this report have already been discussed in detail along with their application [7]. Briefly, $C \log P$ is the calculated partition coefficient in octanol/water and is a measure of hydrophobicity. Mlog P is the experimentally obtained partition coefficient in octanol/water and π is the hydrophobic parameter for the substituents. CMR is the calculated molar refractivity for the whole molecule. MR is calculated as: $\left(n^{2}-1 / n^{2}+2\right)(\mathrm{MW} / \delta)$, where n is the refractive index, MW is the molecular weight, and δ is the density of a molecule. MR is dependent on volume and polarizability. MR can be used for a substituent or for the whole molecule. The indicator variable I is assigned the value of 1 or 0 for special features with special effects that cannot be parameterized and has been explained wherever used. Each regression equation includes 95% confidence limits for each term in parentheses. In QSAR equations, n is the number of data points, r is the correlation coefficient, r^{2} is the goodness of fit, q^{2} is the goodness of prediction and s is the standard deviation.

RESULTS AND DISCUSSION

Kitagawa et al. [8] studied the anti-platelet activities of X-phenols (I) against bovine platelet aggregation induced by adenosine diphosphate (ADP), platelet activating factor (PAF), thrombin (Thr) and collagen (Col) respectively. We derived four QSAR equations (1-4) from their results in Table 1, which showed excellent correlations between inhibition potencies and the hydrophobicity of X-phenols.

Inhibition of ADP induced bovine platelet aggregation by X-phenols (I) (Table 1) [8].

Table 1. Biological and Physicochemical Constants Used to Derive QSAR Equations (1-4) for the Inhibition of ADP, PAF, Thr and Col Induced Bovine Platelet Aggregations Respectively by X-Phenols (I)

No.	X	$\log 1 / \mathrm{C}($ Eq. 1)			$\log 1 / \mathrm{C}($ Eq. 2)			$\log 1 / \mathrm{C}($ Eq. 3)			$\log 1 / \mathrm{C}$ (Eq. 4)			Mlog P	CMR
		obsd	calcd	Δ											
Ia	H	2.93	2.87	0.06	2.89	3.00	-0.10	2.94	2.91	0.03	2.93	3.12	-0.19	1.47	2.84
Ib	3-CN	3.02	3.05	-0.03	3.22	3.19	0.03	2.95	3.08	-0.13	3.31	3.31	0.00	1.70	3.32
Ic	4-NO2	3.25	3.21	0.04	3.55	3.37	0.17	3.20	3.23	-0.03	3.67	3.48	0.19	1.91	3.45
Id	$4-\mathrm{CH}_{3}$	3.00	3.24	-0.24	3.14	3.40	-0.26	--	--	--	--	--	--	1.94	3.31
Ie	$4-\mathrm{C}_{2} \mathrm{H}_{5}$	3.71	3.65	0.06	4.01	3.86	0.15	3.56	3.63	-0.07	--	--	--	2.47	3.77
If	$4-\mathrm{Cl}$	3.86	3.59	0.27	3.84	3.79	0.05	3.81	3.58	0.24	3.95	3.88	0.07	2.39	3.33
Ig	2,4-Cl ${ }_{2}$	4.12	4.11	0.02	4.43	4.36	0.07	4.08	4.06	0.02	4.48	4.43	0.05	3.06	3.82
Ih	$4-\mathrm{C}_{6} \mathrm{H}_{5}$	4.15	4.22	-0.06	4.51	4.48	0.03	--	--	--	4.48	4.55	-0.07	3.20	5.35
Ii	$\begin{gathered} 2-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, \\ 5-\mathrm{CH}_{3} \end{gathered}$	3.98	4.30	-0.31	--	--	--	--	--	--	--	--	--	3.30	4.70
Ij	$2,4,5-\mathrm{Cl}_{3}$	4.82	4.62	0.20	4.79	4.93	-0.14	4.48	4.54	-0.06	4.92	4.97	-0.05	3.72	4.32

$\log 1 / C=0.78(\pm 0.19) \mathrm{M} \log P+1.73(\pm 0.49)$
$n=10, r^{2}=0.920, q^{2}=0.870, s=0.187$
range in $\log 1 / C=2.93-4.82$
A comparison between observed and calculated $\log 1 / C$ of X-phenols (I) used in equation (1) has been shown in Fig. (1).

Fig. (1). Plot of observed versus calculated $\log 1 / \mathrm{C}($ Eq. 1).
Inhibition of PAF induced bovine platelet aggregation by X-phenols (I) (Table 1) [8].
$\log 1 / C=0.86(\pm 0.17) \mathrm{M} \log P+1.73(\pm 0.42)$
$n=9, r^{2}=0.956, q^{2}=0.923, s=0.150$
range in $\log 1 / C=2.89-4.79$
Inhibition of Thr induced bovine platelet aggregation by X-phenols (I) (Table 1) [8].
$\log 1 / C=0.73(\pm 0.17) \mathrm{M} \log P+1.84(\pm 0.42)$
$n=7, r^{2}=0.960, q^{2}=0.932, s=0.128$
range in $\log 1 / C=2.94-4.48$
Inhibition of Col induced bovine platelet aggregation by X-phenols (I) (Table 1) [8].
$\log 1 / C=0.82(\pm 0.16) \mathrm{Mlog} P+1.91(\pm 0.42)$
$n=7, r^{2}=0.972, q^{2}=0.940, s=0.131$
range in $\log 1 / C=2.93-4.92$
The correlations expressed by equations (1-4) express that highly hydrophobic X-phenols would be favored. Despite the fact that four different types of inducers are involved, QSAR (1-4) are very similar and explain $92 \%, 95.6 \%, 96 \%$, and 97.2% of the variance in the platelet aggregation data respectively.

Kitagawa et al. [9] also studied the anti-platelet activities of X-catechols (II) against arachidonic acid (AA) induced rabbit platelet aggregation. We derived equation (5) from their results, which indicates that the hydrophobicity of Xcatechols has good correlation with their activities.

Inhibition of AA induced rabbit platelet aggregation by X-catechols (II) (Table 2) [9].

$\log 1 / C=0.67(\pm 0.32) \mathrm{Clog} P+4.51(\pm 0.53)$
$n=6, r^{2}=0.893, q^{2}=0.773, s=0.228$
range in $\log 1 / C=4.65-6.51$
This equation showed that 89.3% of the variance in antiplatelet activity has been correlated with hydrophobicity. A

Table 2. Biological and Physicochemical Constants Used to Derive QSAR Equation (5) for the Inhibition of AA Induced Rabbit Platelet Aggregation by X-Catechols (II)

No.	X	$\log 1 / \mathrm{C}$ (Eq. 5)			$\mathbf{C l o g} P$	CMR
		obsd.	calcd.	Δ		
IIa	$3-\mathrm{OH}$	4.65	4.65	0.00	0.21	3.15
IIb	$4-\mathrm{NO}_{2}$	5.21	5.48	-0.27	1.45	3.61
IIc	$4-\mathrm{CH}_{3}$	5.30	5.43	-0.13	1.38	3.46
IId	H	5.40	5.10	0.31	0.88	2.99
IIe	4-Cl	5.79	5.83	-0.05	1.98	3.49
IIf	$4-\mathrm{C}_{6} \mathrm{H}_{5}$	6.51	6.36	0.14	2.77	5.51

plot of the observed versus calculated $\log 1 / C$ in Fig. (2) shows good correspondence between the two variables.

Hung et al. [10] studied the anti-platelet activities of caffeic acid amides (III) against rabbit platelet aggregation

Fig. (2). Plot of observed versus calculated $\log 1 / \mathrm{C}$ (Eq. 5).
Table 3. Biological and Physicochemical Constants Used to Derive QSAR Equations (6-8) for the Inhibition of AA, U46619 and MDA Induced rabbit Platelet Aggregations Respectively by Caffeic Acid Amides (III)

No	X	$\log 1 / C$ (Eq. 6)			$\log 1 / C$ (Eq. 7)			$\log 1 / C$ (Eq. 8)			π_{X}	$\mathbf{C l o g} P$	CMR	I
		obsd	calcd	Δ	obsd	calcd	Δ	obsd	calcd.	Δ				
$\mathrm{IIIa}^{\text {a }}$	H	4.25	4.58	-0.33	---	3.91	---	5.17	5.26	-0.09	0.00	2.40	7.58	0
IIIb	$2-\mathrm{OH}$	4.23	4.16	0.07	3.98	3.96	0.02	5.24	4.89	0.35	-0.67	1.96	7.73	0
IIIc	$3-\mathrm{OH}$	4.19	4.16	0.03	---	3.96	---	4.64	4.75	-0.11	-0.67	1.73	7.73	0
IIId ${ }^{\text {a }}$	4-OH	4.60	4.16	0.44	---	3.96	---	4.71	4.75	-0.04	-0.67	1.73	7.73	0
IIIe	2-F	4.67	4.67	0.00	---	3.91	---	5.06	5.13	-0.07	0.14	2.20	7.60	0
IIIf	3-F	4.59	4.67	-0.08	---	3.91	---	5.57	5.51	0.06	0.14	2.80	7.60	0
IIIg	4-F	4.66	4.67	-0.01	---	3.91	---	5.64	5.51	0.13	0.14	2.80	7.60	0
IIIh $^{\text {b }}$	$2-\mathrm{Cl}$	4.73	4.57	0.16	---	4.06	---	5.51	5.04	0.47	0.71	2.52	8.07	1
IIIi ${ }^{\text {b }}$	$3-\mathrm{Cl}$	4.38	4.57	-0.19	---	4.06	---	4.66	5.58	-0.92	0.71	3.37	8.07	1
IIIj	$4-\mathrm{Cl}$	4.59	4.57	0.02	4.02	4.06	-0.04	5.46	5.58	-0.12	0.71	3.37	8.07	1
IIIk	$2-\mathrm{Br}$	5.24	5.12	0.12	---	4.15	---	5.03	4.94	0.09	0.86	2.64	8.36	0
IIII ${ }^{\text {b }}$	$3-\mathrm{Br}$	5.17	5.12	0.05	---	4.15	---	5.09	5.50	-0.41	0.86	3.52	8.36	0
IIIm $^{\text {a, }}$ b	$4-\mathrm{Br}$	4.79	5.12	-0.33	4.18	4.15	0.03	4.94	5.50	-0.56	0.86	3.52	8.36	0
IIIn	3-CN	4.19	4.22	-0.03	---	4.06	---	4.76	4.99	-0.23	-0.57	2.43	8.06	0
IIIo	$2-\mathrm{COOC}_{2} \mathrm{H}_{5}$	4.75	4.90	-0.15	4.42	4.40	0.03	4.97	4.91	0.06	0.51	3.37	9.16	0
IIIp ${ }^{\text {a }}$	$3,4-\left(\mathrm{OCH}_{3}\right)_{2}$	4.22	4.55	-0.33	4.25	4.29	-0.04	4.32	4.35	-0.03	-0.04	2.15	8.81	0

[^1]induced by arachidonic acid (AA), U46619 and MDA, respectively. The following QSAR equations (6, 7 and 8) have been derived form their results.

Inhibition of AA induced rabbit platelet aggregation by caffeic acid amides (III) (Table 3) [10].

$\log 1 / C=0.63(\pm 0.15) \pi_{\mathrm{X}}-0.46(\pm 0.20) I+4.58(\pm 0.09)$
$n=12, r^{2}=0.911, q^{2}=0.822, s=0.113$
outliers: $\mathrm{H} ; 4-\mathrm{OH} ; 4-\mathrm{Br} ; 3,4-\left(\mathrm{OCH}_{3}\right)_{2}$
range in $\log 1 / C=4.19-5.24$
Clog P cannot be used to correlate the above data. Hydrophobic parameter of X-substituents (π_{X}) is the most significant parameter, which can explain more than sixtythree percent of the variance in the data. The indicator variable I takes the value of 1 for $\mathrm{X}=\mathrm{Cl} .91 .1 \%$ of the variance in anti-platelet activity has been explained by this equation. When the equation (6) was derived without dropping any compound, the statistics were not acceptable ($r^{2}=0.654, q^{2}=0.465$). Four of the caffeic acid amides (IIIa, IIId, IIIm and IIIp) in Table (3) were deemed to be
outliers on the basis of their deviations (2 x SD). A comparison between observed and calculated $\log 1 / C$ has been shown in Fig. (3).

Inhibition of U46619 induced rabbit platelet aggregation by caffeic acid amides (III) (Table 3) [10].
$\log 1 / C=0.31(\pm 0.12) \mathrm{CMR}+1.58(\pm 1.02)$
$n=5, r^{2}=0.956, q^{2}=0.873, s=0.043$
range in $\log 1 / C=3.98-4.42$
Equation (7) showed that 95.6% of the variance in antiplatelet activity has been correlated with CMR. Clog P cannot be used to correlate the above data.

Inhibition of MDA induced rabbit platelet aggregation by caffeic acid amides (III) (Table 3) [10].
$\log 1 / C=0.64(\pm 0.22) \mathrm{Clog} P-0.61(\pm 0.24) \mathrm{CMR}+8.39(\pm$ 1.73)
$n=12, r^{2}=0.859, q^{2}=0.782, s=0.165$
outliers: $2-\mathrm{Cl}$; 3-Cl; 3-Br; 4-Br
range in $\log 1 / C=4.32-5.66$
This equation is able to explain 85.9% of data variance. When the equation (8) was derived without dropping any compound, the statistics were not acceptable ($r^{2}=0.413, q^{2}$ $=0.110$). Four compounds in Table (3) were deemed to be outliers on the basis of their deviations $(2 \times \mathrm{SD})$.

In another attempt, Kitagawa et al. [11] studied the antiplatelet activities of X -alcohols (IV) against adenosine

Fig. (3). Plot of observed versus calculated $\log 1 / \mathrm{C}($ Eq. 6).
Table 4. Biological and Physicochemical Constants Used to Derive QSAR Equation (9) and (9a) for the Inhibition of ADP Induced Bovine Platelet Aggregation by X-Alcohols (IV)

No.	X	$\log 1 / C$ obsd	$\log 1 / C$ (Eq. 9)		$\log 1 / C($ Eq. 9a)		M $\log P$	CMR
			calcd	Δ	calcd	Δ		
IVa	$\mathrm{C}_{3} \mathrm{H}_{7}$	0.56	0.51	0.05	0.50	0.06	0.34	1.72
IVb	$\mathrm{C}_{4} \mathrm{H}_{9}$	1.01	1.05	-0.04	1.05	-0.04	0.88	2.19
IVc	$\mathrm{C}_{5} \mathrm{H}_{11}$	1.52	1.57	-0.05	1.61	-0.09	1.40	2.65
IVd	$\mathrm{C}_{6} \mathrm{H}_{13}$	2.24	2.20	0.04	2.17	0.07	2.03	3.11

diphosphate (ADP) induced bovine platelet aggregation. An excellent correlation between the activities of X -alcohols (IV) and their hydrophobic parameters has been derived as shown by equation (9).

Inhibition of ADP induced bovine platelet aggregation by X-alcohols (IV) (Table 4) [11].

$\log 1 / C=1.00(\pm 0.22) \mathrm{M} \log P+0.29(\pm 0.18)$
$n=4, r^{2}=0.995, q^{2}=0.964, s=0.064$
range in $\log 1 / C=0.56-2.24$
Equation (9) explains 99.5% of the variance in antiplatelet activity data. A plot of the observed versus
calculated $\log 1 / C$ in Fig. (4) shows best correspondence between the two variables. It is interesting to note here that there is a high mutual correlation between $\operatorname{Clog} P \&$ CMR ($r^{2}=0.998, q^{2}=0.990$). Thus, the equation (9a) was derived with CMR, which gave exactly the same statistics with that of $\operatorname{Clog} P$. Now, it is very hard to predict which is the most important hydrophobic or polarizability. We prefer equation (9) because the variation at substituents in the compounds is only in the alkyl groups. The statistics of equation (9) is also better than that of equation (9a).
$\log 1 / C=1.20(\pm 0.41) \mathrm{CMR}-1.56(\pm 1.01)$
$n=4, r^{2}=0.988, q^{2}=0.921, s=0.098$
Lien et al. [12] studied the anti-platelet activities of 1,4naphthoquinones (\mathbf{V}) against platelet aggregation induced by arachidonic acid (AA) and collagen (Col). From these data,

Fig. (4). Plot of observed versus calculated $\log 1 / \mathrm{C}($ Eq. 9).
Table 5. Biological and Physicochemical Constants Used to Derive QSAR Equations 10 and 11 for the Inhibition of AA Induced Platelet Aggregation and Col Induced Platelet Aggregation by 1,4-Naphthoquinones (V)

No.	X	Y	$\log 1 / \mathrm{C}($ Eq. 10)			$\log 1 / \mathrm{C}($ Eq. 11)			Clog P	CMR
			obsd.	calcd	Δ	obsd.	calcd	Δ		
$\mathrm{Va}^{\text {a }}$	OCH_{3}	Cl	4.72	4.48	0.24	4.47	4.44	0.02	2.55	5.37
Vb	OCH_{3}	H	4.27	4.28	-0.01	4.14	4.24	-0.11	1.78	4.88
Vc	$\mathrm{OC}_{2} \mathrm{H}_{5}$	Cl	4.47	4.58	-0.11	--	--	--	2.94	5.83
Vd	$\mathrm{OC}_{2} \mathrm{H}_{5}$	H	4.42	4.38	0.04	4.36	4.34	0.02	2.17	5.34
Ve	$\mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}$	Cl	4.69	4.72	-0.03	4.61	4.68	-0.07	3.47	5.60
Vf	$\mathrm{O}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}$	Cl	4.70	4.86	-0.16	4.66	4.82	-0.16	4.00	6.76
Vg	$\mathrm{O}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3}$	Cl	5.06	5.00	0.06	4.97	4.96	0.02	4.53	7.22
Vh	$\mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$	Cl	4.97	4.88	0.09	4.92	4.84	0.09	4.08	7.88
Vi	$\mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}$	H	4.58	4.52	0.06	4.59	4.48	0.11	2.69	5.80
Vj	$\mathrm{OCH}\left(\mathrm{CH}_{3}\right)_{2}$	H	4.44	4.46	-0.02	4.46	4.42	0.04	2.47	5.80
Vk	$\mathrm{O}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}$	H	4.63	4.66	-0.03	4.64	4.62	0.02	3.22	6.27
$\mathrm{V} \mathrm{l}^{\text {b }}$	$\mathrm{O}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3}$	H	4.77	4.80	-0.03	4.52	4.75	-0.23	3.75	6.73
Vm	$\mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$	H	4.82	4.68	0.14	4.66	4.64	0.03	3.30	7.39

[^2]we derived equations (10) and (11), which gave excellent correlations between activities and hydrophobicity of the molecules (V).

Inhibition of AA induced platelet aggregation by 1,4naphthoquinones (V) (Table 5) [12].

$\log 1 / C=0.26(\pm 0.07) \mathrm{Clog} P+3.81(\pm 0.23)$
$n=12, r^{2}=0.873, q^{2}=0.826, s=0.086$
outlier: $\mathrm{X}=\mathrm{OCH}_{3}, \mathrm{Y}=\mathrm{Cl}$
range in $\log 1 / C=4.27-5.06$

One compound was omitted on the basis of their deviation ($2 \times \mathrm{SD}$). A plot of the observed versus calculated $\log 1 / C$ has been shown in Fig. (5).

Inhibition of Col induced platelet aggregation by 1,4naphthoquinones (V) (Table 5) [12].
$\log 1 / C=0.26(\pm 0.07) \mathrm{Clog} P+3.78(\pm 0.22)$
$n=11, r^{2}=0.889, q^{2}=0.822, s=0.084$
outlier: $\mathrm{X}=\mathrm{O}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3}, \mathrm{Y}=\mathrm{H}$
range in $\log 1 / C=4.14-4.97$
Despite the fact that two different types of inducers are involved, QSAR (10) and (11) are very similar and explain 87.3% and 88.9% of the variance in the platelet aggregation inhibitory data respectively.

Cimetiere et al. [13] studied the anti-platelet activities of tetrahydronaphthalenes (VI) against U46619 induced human platelet aggregation. Equation (12) was derived from their results, which indicates that the hydrophobicity of

Fig. (5). Plot of observed versus calculated $\log 1 / \mathrm{C}$ (Eq. 10).
Table 6. Biological and Physicochemical Constants Used to Derive QSAR Equation (12) for the Inhibition of U46619 Induced Platelet Aggregation by Tetrahydronaphthalenes (VI)

No.	X	Y	$\log 1 / \mathrm{C}$ (Eq.12)			$\mathrm{Clog} P$	CMR
			obsd	calcd	Δ		
VIa	H	CH_{3}	6.55	6.73	-0.18	4.59	10.65
VIb	H	$\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$	8.22	7.83	0.39	6.16	13.17
VIc	H	$\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4}(4-\mathrm{F})$	7.96	7.93	0.02	6.30	13.18
VId	H	$\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\left(2-\mathrm{CH}_{3}\right)$	8.10	8.15	-0.05	6.60	13.63
VIe ${ }^{\text {a }}$	H	$\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\left(4-\mathrm{C}_{6} \mathrm{H}_{5}\right)$	7.31	9.16	-1.85	8.04	15.68
VIf	H	$\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\left(3-\mathrm{OCH}_{3}\right)$	7.46	7.78	-0.32	6.07	13.78
VIg	H	$\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4}(3-\mathrm{CN})$	7.44	7.43	0.01	5.59	13.64
VIh ${ }^{\text {a }}$	CH_{3}	CH_{3}	5.77	7.01	-1.24	4.99	11.12
VIi		Ramatroban	6.42	6.29	0.13	3.97	10.83

[^3]tetrahydronaphthalenes (VI) has an excellent correlation with their activities.

Inhibition of U 46619 induced platelet aggregation by tetrahydronaphthalenes (VI) (Table 6) [13].

$\log 1 / C=0.71(\pm 0.27) \mathrm{Clog} P+3.49(\pm 1.51)$
$n=7, r^{2}=0.903, q^{2}=0.820, s=0.246$
outliers: $\mathrm{X}=\mathrm{H}, \mathrm{Y}=\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\left(4-\mathrm{C}_{6} \mathrm{H}_{5}\right) ; \mathrm{X}=\mathrm{Y}=\mathrm{CH}_{3}$
range in $\log 1 / C=5.77-8.22$

Equation (12) showed that 90.3% of the variance in the anti-platelet activity has been correlated with hydrophobicity. When the linear correlation was derived without dropping any compound, the statistics were not acceptable ($r^{2}=0.397, q^{2}=-0.331$). Two compounds in Table (6) were deemed to be outliers on the basis of their deviations (2 x SD). A comparison between observed and calculated $\log 1 / C$ has been shown in Fig. (6).

Berge et al. [14] studied the anti-platelet activities of phenoxyacetaldehyde guanylhydrazones (VII) against adenosine diphosphate (ADP) induced human platelet aggregation. Equation (13) was derived from their results, which indicates that the hydrophobicity of X-substituents (π_{X}) of compounds (VII) has an excellent correlation with their activities.

Inhibition of ADP induced human platelet aggregation by phenoxyacetaldehyde guanylhydrazones (VII) (Table 7) [14].

Fig. (6). Plot of observed versus calculated $\log 1 / \mathrm{C}(\mathrm{Eq} .12)$.
Table 7. Biological and Physicochemical Constants Used to Derive QSAR Equation (13) for the Inhibition of ADP Induced Human Platelet Aggregation by Phenoxyacetaldehyde Guanylhydrazones (VII).

	$\log 1 / \mathrm{C}($ Eq. 13)				$\pi_{\mathbf{X}}$	Clog P	CMR
No.	X	obsd	calcd	Δ			
VIIa	H	2.92	2.93	-0.01	0.00	0.81	5.51
VIIb	$2-\mathrm{Cl}$	3.22	3.24	-0.02	0.71	1.44	6.00
VIIc	$3-\mathrm{Cl}$	3.31	3.24	0.07	0.71	1.67	6.00
VIId	4-Cl	3.25	3.24	0.01	0.71	1.67	6.00
VIIe	$2-\mathrm{OCH}_{3}$	2.96	2.92	0.04	-0.02	0.55	6.12
VIIf	$4-\mathrm{OCH}_{3}$	2.86	2.92	-0.06	-0.02	0.90	6.12
VIIg	$2-\mathrm{CH}_{3}$	3.29	3.18	0.11	0.56	1.31	5.97
VIIh	$3-\mathrm{CH}_{3}$	3.17	3.18	-0.01	0.56	1.31	5.97
VIIi	$4-\mathrm{CH}_{3}$	3.09	3.18	-0.09	0.56	1.31	5.97
VIIj	4-F	3.01	2.99	0.02	0.14	1.10	5.52
VIIk	$4-\mathrm{Br}$	3.25	3.31	-0.06	0.86	1.82	6.28

$\log 1 / C=0.44(\pm 0.13) \pi_{\mathrm{X}}+2.93(\pm 0.07)$
$n=11, r^{2}=0.865, q^{2}=0.808, s=0.062$
range in $\log 1 / C=2.86-3.31$
Equation (13) explains 86.5% of the variance in antiplatelet activity data. A plot of the observed versus calculated $\log 1 / C$ has been shown in Fig. (7).

Kuo et al. [15] studied the anti-platelet activities of pyrrolobenzylisoquinolines (VIII) against platelet aggregation induced by arachidonic acid (AA) and collagen (Col). From these data, we derived equations (14) and (15), which gave excellent correlations between activities and hydrophobicity of the molecules (VIII). It is surprising to
obtain a negative coefficient with $\operatorname{Clog} P$, which suggests that highly hydrophobic molecules (VIII) will be less active.

Inhibition of AA induced platelet aggregation by pyrrolobenzyl-isoquinolines (VIII) (Table 8) [15].

$\log 1 / C=-0.59(\pm 0.28) \mathrm{Clog} P+5.77(\pm 0.68)$
$n=7, r^{2}=0.853, q^{2}=0.709, s=0.114$

Fig. (7). Plot of observed versus calculated $\log 1 / \mathrm{C}$ (Eq. 13).
Table 8. Biological and Physicochemical Constants Used to Derive QSAR Equations (14) and (15) for the Inhibition of AA Induced Platelet Aggregation and Col Induced Platelet Aggregation by Pyrrolobenzylisoquinolines (VIII).

No.	R_{1}	R_{2}	R_{3}	$\log 1 / \mathrm{C}$ (Eq. 14)			$\log 1 / \mathrm{C}$ (Eq. 15)			Clog P	CMR
				obsd	calcd	Δ	obsd	calcd	Δ		
VIIIa	Cl	H	H	4.11	4.27	-0.16	4.35	4.54	-0.19	2.55	9.62
VIIIb	H	Cl	H	4.27	4.27	0.00	4.43	4.54	-0.11	2.55	9.62
VIIİ	H	H	Cl	4.28	4.27	0.01	4.52	4.54	-0.01	2.55	9.62
VIIId	Br	H	H	--	4.18	--	4.40	4.43	-0.03	2.70	9.90
VIIIe	H	Br	H	4.34	4.18	0.16	4.63	4.43	0.20	2.70	9.90
VIIIf	H	H	Br	4.14	4.18	-0.04	4.53	4.43	0.09	2.70	9.90
VIIIg ${ }^{\text {a }}$	OCH_{3}	H	H	4.18	4.74	-0.55	4.45	5.10	-0.66	1.75	9.74
VIIIh	H	OCH_{3}	H	4.68	4.74	-0.06	5.21	5.10	0.11	1.75	9.74
VIIII	H	H	OCH_{3}	4.82	4.74	0.08	5.04	5.10	-0.06	1.75	9.74

[^4]outlier: $\mathrm{R}_{1}=\mathrm{OCH}_{3}, \mathrm{R}_{2}=\mathrm{H}, \mathrm{R}_{3}=\mathrm{H}$
range in $\log 1 / C=4.11-4.82$
When linear correlation (14) was derived without dropping any compound, the statistics were not acceptable ($r^{2}=0.428, q^{2}=-0.212$). One compound in Table (8) was deemed to be outlier on the basis of their deviation (2 x SD). A plot of the observed versus calculated $\log 1 / C$ has been shown in Fig. (8).

Inhibition of Col induced platelet aggregation by pyrrolobenzylisoquinolines (VIII) (Table 8) [15]
$\log 1 / C=-0.71(\pm 0.32) \mathrm{Clog} P+6.35(\pm 0.77)$
$n=8, r^{2}=0.835, q^{2}=0.703, s=0.139$
outlier: $\mathrm{R}_{1}=\mathrm{OCH}_{3}, \mathrm{R}_{2}=\mathrm{H}, \mathrm{R}_{3}=\mathrm{H}$
range in $\log 1 / C=4.35-5.21$
When linear equation (15) was derived without dropping any compound, the statistics $\left(r^{2}=0.452, q^{2}=-0.134\right)$ were not acceptable. One compound in Table (8) was deemed to
be outlier on the basis of their deviation ($2 \times \mathrm{SD}$). Despite the fact that two different types of inducers are involved, QSAR (14) and (15) are very similar and explain 85.3% and 83.5% of the variance in the platelet aggregation inhibitory data respectively. Benzylisoquinoline derivatives are known for their interaction with various biological functions, such as analgesic, muscle relaxation, anticancer and cardiovascular activities.

Ingall et al. [16] studied the anti-platelet activities of phosphonic acids (IX) against platelet aggregation induced by adenosine diphosphate (ADP). From these data, we derived equation (16), which gave parabolic correlations with hydrophobicity. It suggests that the anti-platelet activities of phosphonic acids (IX) first increases with an increase in hydrophobicity to an optimum $\operatorname{Clog} P$ value of 3.36 and then decreases.

Inhibition of ADP induced platelet aggregation by phosphonic acids (IX) (Table 9) [16].

Fig. (8). Plot of observed versus calculated $\log 1 / \mathrm{C}$ (Eq. 14).
Table 9. Biological and Physicochemical Constants Used to Derive QSAR Equation (16) for the Inhibition of ADP Induced Platelet Aggregation by Phosphonic Acids (IX).

No	X	Y	$\log 1 / \mathrm{C}($ Eq. 16$)$			Clog P	CMR
			obsd.	calcd	Δ		
IXa	H	H	3.50	3.66	-0.16	-1.89	10.88
IXb	$\mathrm{SC}_{2} \mathrm{H}_{5}$	H	6.53	6.82	-0.29	-0.14	12.61
IXc	$\mathrm{SC}_{3} \mathrm{H}_{7}$	H	8.60	7.52	1.08	0.39	13.08
IXd	$\mathrm{SC}_{3} \mathrm{H}_{7}$	$\mathrm{CH}_{2} \mathrm{CF}_{3}$	9.48	9.33	0.15	3.48	14.05
IXe	$\mathrm{SC}_{3} \mathrm{H}_{7}$	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{3}$	7.81	8.39	-0.58	1.22	14.62
IXf	$\mathrm{SC}_{3} \mathrm{H}_{7}$	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SCH}_{3}$	9.42	8.86	0.56	1.84	15.28
IXg	$\mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{CF}_{3}$	H	8.87	8.68	0.19	1.57	13.12
IXh	$\mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{CF}_{3}$	$\mathrm{CH}_{2} \mathrm{CF}_{3}$	9.14	8.99	0.15	4.66	14.10
IXi	$\mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{CF}_{3}$	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{3}$	8.02	9.15	-1.13	2.40	14.67
IXj	$\mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{CF}_{3}$	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SCH}_{3}$	9.35	9.31	0.04	3.02	15.32

$\log 1 / C=1.39(\pm 0.47) \mathrm{Clog} P-0.21(\pm 0.13) \mathrm{Clog} P^{2}+$ $7.01(\pm 0.72)$
$n=10, r^{2}=0.894, q^{2}=0.796, s=0.685$
optimum $\operatorname{Clog} P=3.36(2.42-6.89)$
range in $\log 1 / C=3.50-9.48$
Equation 16 has been able to explain more than 89% of the data variance. A plot of the observed versus calculated $\log 1 / C$ has been shown in Fig. (9).

In the present review, four different series of compounds that is X-phenols (I), caffeic acid amides (III), 1,4naphthoquinones (V), and pyrrolobenzylisoquinolines (VIII) were used as platelet aggregation under the influence of different kind of inducers. In the case of three series of compounds that are X-phenols (Eqs. 1-4), 1,4naphthoquinones (Eqs. 10 and 11) and pyrrolobenzylisoquinolines (Eqs. 14 and 15), we obtained very similar results. This indicates that the platelet aggregation does not depend on the nature of the inducers. But in one series of caffeic acid amides (Eqs. 6, 7 and $\mathbf{8}$), we obtained different types of QSAR. The reason of this is not very clear.

To understand the effect of same inducers on the inhibition of platelet aggregation by different series of compounds, the following QSAR (Eqs. 17-21) have been derived.

Inhibition of ADP induced platelet aggregation by X phenols (I), X-alcohols (IV), phenoxyacetaldehyde guanylhydrazones (VII) and phosphonic acids (IX) (Table 10) $[8,11,14,16]$.
$\log 1 / C=0.64(\pm 0.19) \mathrm{Clog} P+0.53(\pm 0.05) \mathrm{CMR}-$ $0.53(\pm 0.41)$
$n=35, r^{2}=0.938, q^{2}=0.923, s=0.668$
range in $\log 1 / C=0.56-9.48$
We derived equation (17) by considering all the data points, which were used in deriving equations (1, 9, 13 and 16) (Tables $\mathbf{1}, \mathbf{4}, 7$ and 9$)$. It is interesting to note here that the equation (17) of combined data set has an excellent correlation with $\operatorname{Clog} P$ and CMR, and surprisingly there is not any outlier, despite the fact that the work was done in different laboratories and with different series of compounds. Individual QSAR equations (1, 9, 13 and 16) have either linear or parabolic correlations with hydrophobic parameter but equation (17) has the correlation with hydrophobic parameter followed by molar refractivity, it may be due to the presence of compounds with different types of structure. A plot of the observed versus calculated $\log 1 / C$ has been shown in Fig. (10).

Inhibition of Col induced platelet aggregation by X phenols (I), 1,4-naphthoquinones (V) and pyrrolobenzylisoquinolines (VIII) (Table 11) [8, 12, 15].
$\log 1 / C=0.21(\pm 0.13) \mathrm{Clog} P+0.69(\pm 0.29) \mathrm{CMR}-$ $0.04(\pm 0.02) \mathrm{CMR}^{2}+1.41(\pm 0.70)$
$n=25, r^{2}=0.878, q^{2}=0.797, s=0.174$
optimum $\mathrm{CMR}=7.81(7.38-8.76)$
outliers: Ij, VIIIh, VIIII
range in $\log 1 / C=2.93-5.21$
We derived equation (18) by considering all the data points, which were used in deriving equations ($\mathbf{4}, 11$ and 15) (Tables $\mathbf{1 , 5}$ and $\mathbf{8}$). A plot of the observed versus calculated $\log 1 / C$ has been shown in Fig. (11).

Fig. (9). Plot of observed versus calculated $\log 1 / \mathrm{C}$ (Eq. 16).

Table 10. Biological and Physicochemical Constants Used to Derive QSAR Equation (17) for the Inhibition of ADP Induced Platelet Aggregation by X-Phenols (I), X-Alcohols (IV), Phenoxyacetaldehyde Guanylhydrazones (VII) and Phosphonic Acids (IX).

No.	compound	$\log 1 / \mathrm{C}($ Eq. 17)			Clog P	CMR
		obsd.	calcd	Δ		
1	Ia	2.93	2.04	0.89	1.47	2.84
2	Ib	3.02	2.44	0.58	1.70	3.32
3	Ic	3.25	2.64	0.61	1.91	3.45
4	Id	3.00	2.59	0.41	1.94	3.31
5	Ie	3.71	3.17	0.54	2.47	3.77
6	If	3.86	2.89	0.97	2.39	3.33
7	Ig	4.12	3.58	0.54	3.06	3.82
8	Ih	4.15	4.48	-0.33	3.20	5.35
9	Ii	3.98	4.20	-0.22	3.30	4.70
10	Ij	4.82	4.27	0.55	3.72	4.32
11	IVa	0.56	0.72	-0.16	0.34	1.72
12	IVb	1.01	1.31	-0.30	0.88	2.19
13	IVc	1.52	1.89	-0.37	1.40	2.65
14	IVd	2.24	2.54	-0.30	2.03	3.11
15	VIIa	2.92	3.03	-0.11	0.81	5.51
16	VIIb	3.22	3.69	-0.47	1.44	6.00
17	VIIc	3.31	3.84	-0.53	1.67	6.00
18	VIId	3.25	3.84	-0.59	1.67	6.00
19	VIIe	2.96	3.18	-0.22	0.55	6.12
20	VIIf	2.86	3.41	-0.55	0.90	6.12
21	VIIg	3.29	3.59	-0.30	1.31	5.97
22	VIIh	3.17	3.59	-0.42	1.31	5.97
23	VIIi	3.09	3.59	-0.50	1.31	5.97
24	VIIj	3.01	3.22	-0.21	1.10	5.52
25	VIIk	3.25	4.08	-0.83	1.82	6.28
26	IXa	3.50	4.13	-0.63	-1.89	10.88
27	IXb	6.53	6.17	0.36	-0.14	12.61
28	IXc	8.60	6.76	1.84	0.39	13.08
29	IXd	9.48	9.26	0.22	3.48	14.05
30	IXe	7.81	8.11	-0.30	1.22	14.62
31	IXf	9.42	8.86	0.56	1.84	15.28
32	IXg	8.87	7.54	1.33	1.57	13.12
33	IXh	9.14	10.05	-0.91	4.66	14.10
34	IXi	8.02	8.89	-0.87	2.40	14.67
35	IXj	9.35	9.64	-0.29	3.02	15.32

Fig. (10). Plot of observed versus calculated $\log 1 / \mathrm{C}($ Eq. 17).
Table 11. Biological and Physicochemical Constants Used to Derive QSAR Equation (18) for the Inhibition of Col Induced Platelet Aggregation by X-Phenols (I), 1,4-Naphthoquinones (V) and Pyrrolobenzylisoquinolines (VIII).

No.	compound	$\log 1 / \mathrm{C}$ (Eq. 18)			$C \log P$	CMR
		obsd	calcd	Δ		
1	Ia	2.93	3.32	-0.39	1.47	2.84
2	Ib	3.31	3.56	-0.25	1.70	3.32
3	Ic	3.67	3.66	0.01	1.91	3.45
4	If	3.95	3.71	0.24	2.39	3.33
5	Ig	4.48	4.04	0.44	3.06	3.82
6	Ih	4.48	4.50	-0.02	3.20	5.35
$7^{\text {a }}$	Ij	4.92	4.34	0.58	3.72	4.32
8	Va	4.44	4.37	0.07	2.55	5.37
9	Vb	4.24	4.09	0.15	1.78	4.88
10	Vd	4.34	4.28	0.06	2.17	5.34
11	Ve	4.68	4.61	0.07	3.47	5.60
12	Vf	4.82	4.89	-0.07	4.00	6.76
13	Vg	4.96	5.03	-0.07	4.53	7.22
14	Vh	4.84	4.95	-0.11	4.08	7.88
15	Vi	4.48	4.48	0.00	2.69	5.80
16	Vj	4.42	4.44	-0.02	2.47	5.80
17	Vk	4.62	4.67	-0.05	3.22	6.27
18	V1	4.75	4.83	-0.08	3.75	6.73
19	Vm	4.64	4.78	-0.14	3.30	7.39
20	VIIIa	4.35	4.49	-0.14	2.55	9.62
21	VIIIb	4.43	4.49	-0.06	2.55	9.62
22	VIIIc	4.52	4.49	0.03	2.55	9.62
23	VIIId	4.40	4.47	-0.07	2.70	9.90
24	VIIIe	4.63	4.47	0.16	2.70	9.90
25	VIIIf	4.53	4.47	0.06	2.70	9.90
26	VIIIg	4.45	4.30	0.15	1.75	9.74
$27^{\text {a }}$	VIIIh	5.21	4.30	0.91	1.75	9.74
$28^{\text {a }}$	VIIIi	5.04	4.30	0.74	1.75	9.74

[^5]

Fig. (11). Plot of observed versus calculated $\log 1 / \mathrm{C}($ Eq. 18).

Inhibition of U46619 induced platelet aggregation by caffeic acid amides (III) and tetrahydronaphthalenes (VI) (Table 12) [10, 13].
$\log 1 / C=0.70(\pm 0.12) \mathrm{CMR}-1.64(\pm 1.37)$
$n=13, r^{2}=0.936, q^{2}=0.913, s=0.451$
outlier: VIe
range in $\log 1 / C=3.98-8.22$
We derived equation (19) by considering all the data points, which were used in deriving equations (7 and 12) (Tables 3 and 6). A plot of the observed versus calculated
$\log 1 / C$ has been shown in Fig. (12). With respect to equation (19), it is important to note that there is a high mutual correlation between Clog P and CMR ($r^{2}=0.887$, $q^{2}=0.838$). By considering $\operatorname{Clog} P$ in place of CMR, we can derive equation (19a).
$\log 1 / C=1.01(\pm 0.25) \mathrm{Clog} P+1.52(\pm 1.20)$
$n=13, r^{2}=0.875, q^{2}=0.833, s=0.628$
outlier: VIe
Thus, it is very hard to predict for this combined data set if there is a positive steric or positive hydrophobic effect.

Table 12. Biological and Physicochemical Constants Used to Derive QSAR Equations (19) and (19a) for the Inhibition of U46619 Induced Platelet Aggregation by Caffeic Acid Amides (III) and Tetrahydronaphthalenes (VI)

No.	compound	$\log 1 / \mathrm{C}$ obsd	$\log 1 / \mathrm{C}$ (Eq. 19)		$\log 1 / \mathrm{C}$ (Eq. 19a)		CMR	$C \log P$
			calcd	Δ	calcd	Δ		
1	IIIb	3.98	3.80	0.18	3.49	0.49	7.73	1.96
2	IIIj	4.02	4.04	-0.02	4.91	-0.89	8.07	3.37
3	IIIm	4.18	4.25	-0.07	5.06	-0.88	8.36	3.52
4	IIIo	4.42	4.81	-0.39	4.91	-0.49	9.16	3.37
5	IIIp	4.25	4.56	-0.31	3.69	0.56	8.81	2.15
6	VIa	6.55	5.86	0.69	6.14	0.41	10.65	4.59
7	VIb	8.22	7.63	0.59	7.72	0.50	13.17	6.16
8	VIc	7.96	7.64	0.32	7.86	0.10	13.18	6.30
9	VId	8.10	7.96	0.14	8.16	-0.06	13.63	6.60
$10^{\text {a }}$	VIe	7.31	9.40	-2.09	9.61	-2.30	15.68	8.04
11	VIf	7.46	8.06	-0.60	7.63	-0.17	13.78	6.07
12	VIg	7.44	7.96	-0.52	7.14	0.30	13.64	5.59
13	VIh	5.77	6.19	-0.42	6.54	-0.77	11.12	4.99
14	VIi	6.42	5.99	0.43	5.52	0.90	10.83	3.97

${ }^{\mathrm{a}}$ Not included in the derivation of QSAR (19) and (19a)

Fig. (12). Plot of observed versus calculated $\log 1 / \mathrm{C}$ (Eq. 19).
Table 13. Biological and Physicochemical Constants Used to Derive QSAR Equations (20) and (21) for the Inhibition of AA Induced Platelet Aggregation by X-Catechols (II), Caffeic Acid Amides (III), 1,4-Naphthoquinones (V) and Pyrrolobenzylisoquinolines (VIII).

No.	compound	$\log 1 / \mathrm{C}$ obsd	$\log 1 / \mathrm{C}$ (Eq. 20)		$\log 1 / \mathrm{C}($ Eq. 21)		CMR	$\mathrm{Clog} P$
			calcd	Δ	calcd	Δ		
$1^{\text {a }}$	IIa	4.65	--	--	3.65	1.00	3.15	0.21
2	IIb	5.21	5.25	-0.04	--	--	3.61	1.45
3	IIc	5.30	5.31	-0.01	--	--	3.46	1.38
4	IId	5.40	5.41	-0.01	--	--	2.99	0.88
5	IIe	5.79	5.48	0.31	--	--	3.49	1.98
$6^{\text {a }}$	IIf	6.51	--	--	4.54	1.97	5.51	2.77
7	IIIa	4.25	4.30	-0.05	--	--	7.58	2.40
8	IIIb	4.23	4.15	0.08	--	--	7.73	1.96
9	IIIc	4.19	4.08	0.11	--	--	7.73	1.73
10	IIId	4.60	--	--	4.55	0.05	7.73	1.73
11	IIIe	4.67	--	--	4.64	0.03	7.60	2.20
12	IIIf	4.59	4.42	0.17	--	--	7.60	2.80
13	IIIg	4.66	4.42	0.24	--	--	7.60	2.80
14	IIIh	4.73	--	--	4.78	-0.05	8.07	2.52
15	IIII	4.38	4.55	-0.17	--	--	8.07	3.37
16	IIIj	4.59	4.55	0.04	--	--	8.07	3.37
$17^{\text {a }}$	IIIk	5.24	--	--	4.84	0.40	8.36	2.64
18	IIII	5.17	--	--	5.05	0.12	8.36	3.52
19	IIIm	4.79	4.59	0.20	--	--	8.36	3.52
20	IIIn	4.19	4.27	-0.08	--	--	8.06	2.43
21	IIIo	4.75	4.54	0.21	--	--	9.16	3.37
22	IIIp	4.22	4.16	0.06	--	--	8.81	2.15
23	Va	4.72	4.85	-0.13	--	--	5.37	2.55
24	Vb	4.27	--	--	4.23	0.04	4.88	1.78
25	Vc	4.47	--	--	4.61	-0.14	5.83	2.94
26	Vd	4.42	--	--	4.37	0.05	5.34	2.17
27	Ve	4.69	--	--	4.71	-0.02	5.60	3.47
28	Vf	4.70	4.92	-0.22	--	--	6.76	4.0
29	Vg	5.06	5.01	0.05	--	--	7.22	4.53
30	Vh	4.97	4.79	0.18	--	--	7.88	4.08
31	Vi	4.58	4.76	-0.18	--	--	5.80	2.69
32	Vj	4.44	4.69	-0.25	--	--	5.80	2.47
33	Vk	4.63	4.79	-0.16	--	--	6.27	3.22
34	V1	4.77	4.85	-0.08	--	--	6.73	3.75
35	Vm	4.82	4.60	0.22	--	--	7.39	3.30
36	VIIIa	4.11	4.31	-0.20	--	--	9.62	2.55
37	VIIIb	4.27	4.31	-0.04	--	--	9.62	2.55
38	VIIIc	4.28	4.31	-0.03	--	--	9.62	2.55
39	VIIIe	4.34	4.39	-0.05	--	--	9.90	2.70
40	VIIIf	4.14	4.39	-0.25	--	--	9.90	2.70
41	VIIIg	4.18	4.08	0.10	--	--	9.74	1.75
42	VIIIh	4.68	--	--	4.79	-0.11	9.74	1.75
43	VIIIi	4.82	--	--	4.79	0.03	9.74	1.75

[^6]

Calcd. $\log 1 / \mathrm{C}$
Fig. (13). Plot of observed versus calculated $\log 1 / \mathrm{C}$ (Eq. 20).

We prefer equation (19) because it is statistically better than that of equation (19a).

Inhibition of AA induced platelet aggregation by X catechols (II), caffeic acid amides (III), 1,4-naphthoquinones (V) and pyrrolobenzylisoquinolines (VIII) (Table 13) [9, 10, 12, 15].
$\log 1 / C=0.31(\pm 0.10) \mathrm{Clog} P-0.87(\pm 0.26) \mathrm{CMR}+$ $0.05(\pm 0.02) \mathrm{CMR}^{2}+7.29(\pm 0.69)$
$n=30, r^{2}=0.858, q^{2}=0.814, s=0.167$
inversion point for $\mathrm{CMR}=8.77(8.17-10.03)$
range in $\log 1 / C=4.11-5.79$
$\log 1 / C=0.24(\pm 0.11) \mathrm{Clog} P+0.12(\pm 0.04) \mathrm{CMR}+$ $3.23(\pm 0.45)$
$n=10, r^{2}=0.892, q^{2}=0.731, s=0.091$
outliers: IIa, IIf, IIIk
range in $\log 1 / C=4.27-6.51$
From the forty-three data points of this combined data set, which were used in deriving equations (5, 6, 10 and 14) (Tables 2, 3, 5 and 8), we were unable to derive a good QSAR due to the presence of thirteen outliers and so that is not acceptable. The presence of a large number of outliers may be due to their interaction with the receptor in a different mode. Thus, this combined data set was divided into two subsets on the basis of outliers and derived two equations (20) and (21) with good statistics [17-19]. It is interesting that equation (20) brings out an allosteric reaction in terms of CMR [20-27]. This means, at first the activity declines with an increase in CMR up to the inversion point
$(\mathrm{CMR}=8.77)$ and then the activity begins to increase. This implies a change in receptor structure.

On the other hand, equation (21) is a linear correlation with two parameters that are $\operatorname{Clog} P$ and CMR. A plot of the observed versus calculated $\log 1 / C$ has been shown in Fig. (13).

CONCLUSION

An analysis of our QSAR results on platelet aggregation inhibitors, which brings up a number of points of interest. The hydrophobic parameter is one of the most important determinants of the activity. Out of 16 QSAR, 15 contain a correlation between activity and hydrophobicity. A positive linear correlation is found in 12 equations (Eqs. 1-6 and 813). The coefficient with hydrophobic parameter varies considerably, from a low value of 0.26 (Eqs. 10 and 11) to a high value of 1.00 (Eq. 9). These data suggest that although activity might be improved by increasing compound hydrophobicity, this will not enough to establish the upper limit of $\operatorname{Clog} P$ for maximum inhibition. QSAR (16) is an encouraging example, where we get a parabolic model in $\operatorname{Clog} P$ term. This means the maximum inhibition of the compounds (IX) will be at optimal $\operatorname{Clog} P=3.36$. We believe that this will be the predictive model to narrow the synthetic challenges in order to yield very specific platelet aggregation inhibitors. On the basis of this model, we predict three compounds that may be the next synthetic target selection (please see Table 14).

QSAR (17-21) have been derived by combining the data of different series of compounds under the influence of same

Table 14. Next Synthetic Target Selection from QSAR (16)

No	\mathbf{X}	\mathbf{Y}	Calcd. log 1/C from Eq.16	Clog \boldsymbol{P}
IXk	$\mathrm{SC}_{3} \mathrm{H}_{7}$	$\mathrm{C}_{5} \mathrm{H}_{11}$	9.34	3.34
$\mathrm{IX1}$	$\mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{CF}_{3}$	$\mathrm{OCH}_{2} \mathrm{Ph}$	9.34	3.43
IXm	$\mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{CF}_{3}$	COPh	9.33	3.20

inducers. The results of these equations (17-21) have shown that two parameters, hydrophobic and molar refractivity, will be important. We can conclude that the anti-platelet activities of these compounds are largely dependent not only on their hydrophobicity, but also the effect of their molar refractivity.

REFERENCES

[1] Weston, C.; Rao, U. Int. J. Clin. Practice 2003, 57, 898.
[2] Clutton, P.; Folts, J. D.; Freedman, J. E. Pharmacol. Res. 2001, 44, 255.
[3] Ault, K. A.; Cannon, C. P.; Mitchell, J.; McCahan, J.; Tracy, R. P.; Novotny W. F.; Reimann, J. D.; Braunwald, E. J. Am. Coll. Cardiol. 1999, 33, 634.
[4] Helft, G.; Osende, J. I.; Worthley, S. G.; Zaman, A. G.; Rodriguez, O. J.; Lev, E. I.; Farkouh, M. E.; Fuster, V.; Badimon, J. J.; Chesebro, J. H. Arterioscler. Thromb. Vasc. Biol. 2000, 20, 2316.
[5] Zhang, W.; Yao, J.; Pham, V.; Whitney, T.; Froese, D.; Friesen, A. D.; Stang, L.; Xu, C.; Shuaib, A.; Diakur, J. M.; Haque, W. Bioorg. Med. Chem. Lett. 2004, 14, 4747.
[6] C-QSAR Program, BioByte Corp., 201W. 4 ${ }^{\text {th }}$ st., Suit 204, Claremont, CA 91711, USA. www.biobyte.com
[7] Hansch, C.; Leo, A. In Exploring QSAR: Fundamentals and Applications in Chemistry and Biology; American Chemical Society; Washington, DC, 1995.
[8] Kitagawa, S.; Ito, Y.; Oda, Y.; Kametani, F. Biochem. Biophys. Acta 1989, 1011, 52.
[9] Kitagawa, S.; Fujisawa, H.; Baba, S.; Kametani, F. Chem. Pharm. Bull. 1991, 39, 1062.
[10] Hung, C.-C.; Tsai, W.-J.; Kuo, L.-M. Y.; Kuo, Y.-H. Bioorg. Med. Chem. 2005, 13, 1791.
[11] Kitagawa, S.; Shinohara, T.; Kametani, F. J. Membrane Biol. 1984, 79, 97.
[12] Lien, J.-C.; Huang, L.-J., Teng, C.-M., Wang, J.-P.; Kuo, S.-C. Chem. Pharm. Bull. 2002, 50, 672.
[13] Cimetiere, B.; Dubuffet, T.; Muller, O.; Descombes, J.-J.; Simonet, S.; Laubie M.; Verbeuren, T. J.; Lavielle, G. Bioorg. Med. Chem. Lett. 1998, 8, 1375.
[14] Berge, G.; Darmanaden, R.; Artis-Noel, A.-M.; Fulcrand, P.; Castle, J.; Orzalesi, H. Eur. J. Med. Chem., 1983, 18, 45.
[15] Kuo, R.-Y.; Wu, C.-C.; Chang, F.-R.; Yeh, J.-L., Chen, I.-J.; Wu, Y.-C. Bioorg. Med. Chem. Lett. 2003, 13, 821.
[16] Ingall, A. H.; Dixon, J.; Bailey, A.; Coombs, M. E.; Cox, D.; McInally, J. I.; Hunt, S. F.; Kindon, N. D.; Teobald, B. J.; Willis, P. A.; Humphries, R. G.; Leff, P.; Clegg, J. A.; Smith, J. A.; Tomlinson, W. J. Med. Chem. 1999, 42, 213.
[17] Verma, R. P. Bioorg. Med. Chem. 2005, 13, 1059.
[18] Hansch, C.; Verma, R. P.; Kurup, A.; Mekapati, S. B. Bioorg. Med. Chem. Lett. 2005, 15, 2149.
[19] Verma, R. P.; Hansch, C. Bioorg. Med. Chem. 2005, 13, 4597.
[20] Monod, J.; Wyman, J.; Changeux, J. P. J. Mol. Biol., 1965, 12, 88.
[21] Koshland, D. E., Jr.; Hamadani, K. J. Biol. Chem. 2002, 277, 46841.
[22] Bender, W.; Staudt, M.; Trankle, C.; Mohr, K. Life Sci. 2000, 66, 1675.
[23] Hansch, C.; Garg, R.; Kurup, A. Bioorg. Med. Chem. 2001, 9, 283.
[24] Hansch, C.; Hoekman, D.; Leo, A.; Weininger, D.; Selassie, C. D. Chem. Rev. 2002, 102, 783.
[25] Hansch, C.; Garg, R.; Kurup, A.; Mekapati, S. B. Bioorg. Med. Chem. 2003, 11, 2075.
[26] Verma, R. P. Lett. Drug Des. Discov. 2005, 2, 205.
[27] Mekapati, S. B.; Kurup, A.; Verma, R. P.; Hansch, C. Bioorg. Med. Chem. 2005, 13, 3737.

Copyright of Mini Reviews in Medicinal Chemistry is the property of Bentham Science Publishers Ltd. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.

Copyright of Mini Reviews in Medicinal Chemistry is the property of Bentham Science Publishers Ltd. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.

[^0]: *Address correspondence to this author at the Department of Chemistry, Pomona College, Claremont, CA 91711, USA; Tel: 909-607-4249; Fax: 909-607-7726; E-mail: rverma@pomona.edu

[^1]: ${ }^{\mathrm{a}}$ Not included in the derivation of $\operatorname{QSAR}(\mathbf{6}) ;{ }^{\mathrm{b}}$ Not included in the derivation of $\operatorname{QSAR}(\mathbf{8})$

[^2]: ${ }^{\mathrm{a}}$ Not included in the derivation of $\operatorname{QSAR}(\mathbf{1 0})$; ${ }^{\mathrm{b}}$ Not included in the derivation of SSAR (11)

[^3]: ${ }^{\mathrm{a}}$ Not included in the derivation of QSAR (12)

[^4]: ${ }^{\mathrm{a}}$ Not included in the derivation of QSAR (14) and (15)

[^5]: ${ }^{\mathrm{a}}$ Not included in the derivation of QSAR (18)

[^6]: ${ }^{\text {a }}$ Not included in the derivation of QSAR (21)

